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ABSTRACT

We show that the shape of P-Cygni line pro�les of photospheric phase super-

nova can be analytically inverted to extract both the optical depth and source

function of the line { i.e. all the physical content of the model for the case when

the Sobolev approximation is valid. Under various simplifying assumptions, we

derive formulae that give S(r) and �(r) in terms of derivatives of the line ux

with respect to wavelength. The transition region between the minimum and

maximum of the line pro�le turns out to give especially interesting information

on the optical depth near the photosphere. The formulae give insights into the

relationship between line shape and physical quantities that may be useful in

interpreting observed spectra and detailed numerical calculations.

Subject headings: line: formation | line: pro�les | line: identi�cation | radia-

tive transfer | supernovae
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1. Introduction

The Sobolev approximation (Sobolev 1960; Castor 1970; Rybicki & Hummer 1978) al-

lows for a simpli�ed solution to the radiative transfer equation in media with high velocity

gradients, such as supernovae. The Sobolev approximation has been used to calculate syn-

thetic spectra in stars with strong winds (Castor & Nussbaumer 1972; Pauldrach et al. 1986)

and to �t observed supernova spectra and place constraints on explosion models (Branch

et al. 1983; Je�ery & Branch 1990; Mazzali et al. 1992; Deng et al. 2000). Typically these

models assume spherical symmetry and ignore continuous opacity. Despite the simplifying

assumptions, the synthetic spectra �t the data quite well.

To calculate line pro�les in the Sobolev case two physical quantities must be speci�ed:

(1) �(r): the optical depth of a line as a function of radius (often assumed to be a power

law), and (2) S(r): the source function of the line as a function of radius (often assumed to

be a resonant scattering source function). The Sobolev approximation has most often been

used, like more sophisticated radiative transfer techniques, in a direct analysis of data, where

the physical quantities are speci�ed or calculated and the resulting spectrum is compared

to observed data. On the other hand, there has been some interest in taking the inverse

approach, i.e. using the line shape of observed data to infer the physical conditions in the

atmosphere. Fransson & Chevalier (1989) showed that the emissivity could be calculated

for forbidden lines by di�erentiating the observed line pro�le with respect to wavelength

and estimated the e�ects of electron scattering. Ignace & Hendry (2000), using the Sobolev

approximation, derived an analytic formula that gave a combination of S(r) and �(r) as a

function of the derivative of the red side of an emission feature of arbitrary optical depth.

The run of the optical depth of a line is then given if one speci�es a form for the source

function. For instance S(r) in the case of pure resonance scattering is given by:

S(r) = IphW (r); (1)

where

W (r) =
1

2

�
1�

r
1�

�rph
r

�2�
(2)

is the dilution factor (Mihalas 1978). Iph is the intensity from the photosphere and rph the

radius of the photosphere.

However, in supernova atmospheres the source function may deviate strongly from pure

resonance scattering. In fact the failure of Sobolev models to properly �t the shape of some

spectral lines { in particular net emission features { is basically because the source function

is usually assumed that of pure resonant scattering, not because of direct limitations in the

Sobolev approximation itself. The source function is an interesting quantity in its own right
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and ideally an inversion would extract both S(r) and �(r) from the line pro�le. In what

follows we show how the degeneracy found by Ignace & Hendry (2000) can be broken for

photospheric phase supernovae and derive analytic expressions for both �(r) and S(r) using

the shape of the entire line pro�le, thus providing a complete solution to the inverse problem.

We derive the formulae assuming spherical symmetry, an expanding line-scattering at-

mosphere surrounding a sharp continuum-emitting photosphere that absorbs any ux scat-

tered back onto it, no continuous opacity, and no line blending. Even when these assumptions

are not strictly valid the formulae should still give considerable insight into the physical con-

ditions in the atmosphere. On the other hand, the limitations of the formulae provide an

interesting result in their own right { they clearly show what type of features are impossible

under the above assumptions, making it is obvious where more complicated scenarios must

be invoked to explain a spectrum.

2. The Sobolev Approximation

In the most often used Sobolev model, one begins with a perfectly sharp, spherical

photosphere that emits radiation as a blackbody, and which is surrounded by a moving

atmosphere with large velocity gradient. The basic idea behind the Sobolev approximation

is that a photon emitted from the photosphere only interacts with a line in the small region of

the atmosphere where the photon is Doppler shifted into resonance with the line. Since the

source function can be assumed to be constant over this small resonance region, the solution

of the radiative transfer equation is greatly simpli�ed. It also becomes simpler to visualize

line formation, as the line ux at a given wavelength comes from a 2-dimensional resonance

surface in the atmosphere. The criterion for the validity of the Sobolev approximation is

that the resonance regions be suÆciently small, and this is characterized by the ratio of

the atmosphere's thermal velocity (or mean microturbulent velocity, if signi�cant) to the

velocity scale height (i.e the velocity range over which temperature, density, and occupation

numbers change by a factor of order 2 (Je�ery 1993)). Quantitative accuracy is found for

velocity ratios . 0:1 (Olson 1982). For photospheric phase supernovae thermal velocities are

of order 10 km s�1 and velocity scale heights are � 103 km s�1, giving a ratio of � 10�2.

For supernova atmospheres, homology is established shortly after the explosion, so that

v = r=t, where t is the time since explosion. In this case the resonance surface for a

wavelength is a plane perpendicular to the line of sight. We label the line of sight with a

coordinate z, with origin at the center of expansion and with z increasing away from the

observer (see Figure 1). A plane at coordinate z has a z-component velocity of vz = z=t =

z vph=rph where vph is the velocity of the photosphere. This plane is then responsible for the
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line ux at a wavelength � = �0[1 + (z=rph )(vph=c)], i.e the rest wavelength, �0, Doppler

shifted by the z-component velocity.

The ux at a given wavelength is calculated by integrating over all the characteristic

rays of the corresponding plane. Figure 1 shows that the formation of the line pro�le breaks

up schematically into three regions. For z � 0, the ux is redshifted with respect to the line

center so we call this the red side. This leads to an expression for the ux as an integral over

impact parameter p (the coordinate perpendicular to the line of sight):

F (z)

2�
=

Z rph

0

Iphp dp+

Z
1

rph

S(r)(1� �(r))p dp (3)

=
1

2
r2
ph
Iph +

Z
1

rph

S(r)(1� �(r))p dp

where �(r) = e��(r) and F (z) is the observed ux (apart from a factor of 1=D2, where D is

the distance to the supernova) at wavelength �� = ���0 = �0zvph=crph = �0z=ct. The �rst

term in Eqn. (3) accounts for the ux coming directly from the photosphere, and the second

term for photons scattered or created to emerge along the line of site. We have assumed for

convenience an in�nite atmosphere although none of our results is altered in the case that

the atmosphere terminates at some radius rmax.

For z < 0, the integral has three terms in general, with the third term in Eqn. (4)

now representing the region where material intervening between the photosphere and the

observer leads to absorption of the continuum radiation:

F (z)

2�
=

Z p0

0

Iphp dp+

Z
1

p0

S(r)(1� �(r))p dp+

Z rph

p0

Iph�(r)p dp (4)

=
1

2
p2
0
Iph +

Z
1

p0

S(r)(1� �(r))p dp+

Z rph

p0

Iph�(r)p dp:

The limit p0 is given by the p location of the spherical photosphere for a given z, namely

p0 =

( q
r2
ph
� z2 for � rph < z < 0

0 for z � �rph

and the �rst term of Eqn. (4) is identically zero for z � �rph. We call the part of the line

pro�le where z < �rph the blue side and the part where �rph < z < 0 the mid region.
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3. The Inversion Formulae

3.1. Inversion for �(r) for rph < r <
p
2rph

We consider the inversion of each region of the line in turn, beginning with the mid

region. The mid region of the line pro�le turns out to be only sensitive to the optical depth

of the line near the photosphere. Using Eqn. (4), we change the integration variable from p

to r =
p
p2 + z2, and divide through by Iph:

r2
ph

2
f(z) =

Z rph

jzj

r dr +

Z
1

rph

s(r)(1� �(r))r dr +

Z pz2+r2
ph

rph

�(r)r dr; (5)

where we have de�ned s(r) = S(r)=Iph and f(z) = F (z)=(�Iphr
2

ph
) (i.e. the total ux divided

by the continuum ux). Iph has been assumed to be constant over the line pro�le.

Written this way we see that the term involving the source function is independent of

z and so contributes a constant amount to the ux for every point in the mid region. The

derivative of the mid region is therefore independent of the source function. The change in

ux from a velocity surface at z to one at z � �z is due only to the fact that a bit more

of the photosphere is now obscured by the optical depth of the line. One then expects the

derivative df

dz
to depend only on the optical depth.

Since the terms in Eqn. (5) only depend on z in the limits of the integral we can

di�erentiate the integrals using Leibnitz' rule:

d

dz

Z �(z)

�(z)

g(t) dt = g(�)
d�

dz
� g(�)

d�

dz
(6)

Applying Eqn. (6) to Eqn. (5) allows us to solve for �(r):

�(r =
q
r2
ph
+ z2) = 1�

r2
ph

2jzj
df

dz
= 1� �2

0

2j��j
df

d��

�vph
c

�2
(7)

which is valid for �rph < z < 0. In using Eqn. (7) to calculate �(r) from a spectrum,

one can choose either ��, z, or r as the independent parameter. For instance, from ��

(which is always less than zero for Eqn. [7]) the other two parameters are determined by

z = rph(��=�0)(c=vph) and r =
q
r2
ph
+ z2. The photospheric radius is itself given by

rph = vpht; however if the time since explosion is not known, one can still determine � as a

function of the scaled distance r=rph.

Eqn. (7) gives us some immediate insight into the relationship between line shape and

optical depth. The steepness of the mid region (once the photospheric velocity has been
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scaled out) is a direct indication of the Sobolev optical depth. If no line feature exists, then
df

dz
= 0 and hence � = 1 (i.e � = 0). Thus the absence of a feature implies either negligible

line optical depth or the breakdown of our assumptions { in this formalism there is no choice

for the source function that allows a line to \erase" itself. A stair-step mid region could be

a signal that the optical depth near the photosphere is oscillating between small and large

values (i.e. the medium is clumpy).

Note that since � � 1, Eqn. (7) implies that the derivative df

dz
is always greater than or

equal to zero; i.e. the mid region always increases (or is at) to the red. The appearance of

a rising hump in the mid region, could indicate that the stated assumptions do not hold.

The fact that df

dz
� 0 also implies that an emission feature cannot peak blueward of

its rest wavelength (at the most it can remain at into the mid region as one would have

for a detached atmosphere). However, the peaks of emission features are indeed found to

be blue-shifted, both in real data and in spherically symmetric NLTE models. Je�ery &

Branch (1990) and Duschinger et al. (1995) attribute the blueshift to an NLTE e�ect where

a large source function near the photosphere enhances the ux in the mid region. Under our

assumptions this cannot be correct, since Eqn. (5) shows that the shape of the mid region is

independent of the source function. Various second order physical e�ects, not included in the

inversion formulae, could possibly explain the blueshifts, for example: continuous opacity

added to the model could preferentially extinguish photons from the red side of the envelope;

an absorption from another line to the red could cut into the emission peak; a large slope

in the continuum could shift the peak; clumpiness of the photosphere (Wang & Hu 1994)

could break the spherical symmetry of the problem; relativistic e�ects can cause a signi�cant

blueshift for high photospheric velocities (� approximately 15,000 km/s (Je�ery 1993)); or

line-scattered light could be di�usely reected o� and blueshifted by the photosphere, causing

a blueshift of the emission peak (Chugai 1988).

A few points must be made concerning the applicability of Eqn.(7): (1) near the rest

wavelength the equation may not yield reliable results, since the �� in the denominator

goes to zero and must be delicately canceled by the ux derivative also going to zero. Thus

any noise in the ux derivative (which must be evaluated numerically from the data) will

be inated at small ��. (2) one can not extract realistic values for � � 1 since � depends

exponentially on � . One will know � is large but not its exact value; (3) at late times (the

nebular phase) the photosphere may become negligibly small and so there is no mid region

{ in this case, as we will see, our analysis reduces to that of Ignace & Hendry (2000); (4)

Eqn. (7) only gives the value of � for the radial region rph < r <
p
2rph. This is expected

to be the region of highest density opacity in the atmosphere and so our formula for �(r) is

interesting in itself. For example, if an atmosphere's density scales like r�8 (a density law
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often used in spectral analysis; e.g. Millard et al. (1999)) then at r =
p
2rph the optical

depth has already fallen to 1/16 of its photospheric value. Nevertheless, in the following we

show how it is possible to extend the solution for �(r) to arbitrary r by using information

from the blue and red sides of the line pro�le.

3.2. Inversion for S(r)

We next consider the inversion of the red side of the line, which will allow us to solve

for the source function. Changing variables in Eqn. (3), we see that the ux is now given by

a source term plus an unobstructed photosphere term:

r2
ph

2
f(z) =

1

2
r2
ph
+

Z
1

p
r2
ph
+z2

s(r)(1� �(r))r dr: (8)

The second term in Eqn. (3) is a constant with respect to z since the photosphere is always

completely unobscured for z > 0. The same technique of di�erentiating the integral allows

us to solve for s(r):

s(r =
q
r2
ph
+ z2) = �

r2
ph

1� �(r)

1

2z

df

dz
(9)

= � 1

1� �(r)

�2
0

2��

df

d��

�vph
c

�2
which is valid for all z � 0 and the independent parameter can be chosen to be any of ��, z,

or r. This is essentially the same result derived by Ignace & Hendry (2000). Because Eqn. (7)

together with Eqn. (13) (see below) gives � everywhere, Eqn. (9) can be used to determine

the source function at all radii above the photosphere. Note if � = 0 then � = 1 and Eqn. (9)

is unde�ned { if a line has no optical depth it is of course impossible to determine its source

function. For large optical depth, � = 0, and the shape of the red side depends on the source

function only. Since s � 0 and � � 1 we must have df

dz
� 0 on the red side { the red side

always decreases (or stays at) to the red. One cannot have humps or even a redshifted

emission peak. Redshifts can occur due to non-Sobolev radiative transfer e�ects, but these

are likely to be very small for supernovae (Hamann 1981).
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3.3. Inversion for �(r) for r >
p
2rph

Finally the ux from the blue side of the pro�le will allow us to extend the solution of

� to large r. The ux is given by a source term plus a fully obstructed photosphere:

r2
ph

2
f(z) =

Z
1

jzj

s(r)(1� �(r))r dr +

Z pr2
ph
+z2

jzj

�(r)r dr: (10)

The same di�erentiation technique yields:

�(r =
q
r2
ph
+ z2) = �(jzj) + s(jzj)f1� �(jzj)g �

r2
ph

2jzj
df

dz
; (11)

which is valid for z < �rph. Making use of spherical symmetry, Eqn. (9) can be used to

replace the second term in Eqn. (11) with

s(jzj)(1� �(jzj)) = �
r2
ph

2z+

df(z+)

dz
(12)

where z+ =
q
z2 � r2

ph
. Combining Eqns. (11) and (12) we obtain:

�(r =
q
z2 + r2

ph
) = �(r = jzj) (13)

��2
0

2

�vph
c

�2nh 1

��

df

d��

i
��=

�0
ct

p
z2�r2

ph

+
h 1

j��j
df

d��

i
��=�

jzj�0
ct

o
:

where jzj > rph is the independent parameter for evaluating �(r =
p
z2 + rph) from �(r = jzj)

and df

dz
. Given �(r) for r 2 [nrph;

p
n + 1rph], Eqn. (13) allows us to evaluate �(r) for r 2

[
p
n+ 1rph;

p
n+ 2rph] where n � 1 is an integer. Beginning with �(r) for r 2 [rph;

p
2rph],

given by Eqn. (7), we can in fact use Eqn. (13) to �nd �(r) for all r.

4. Discussion

For late times when the photosphere becomes negligibly small (rph �! 0), the mid

region disappears and Eqn. (7) becomes meaningless. We cannot use the reduced quantities

f(z) and s(r) in this case. Instead the counterpart to Eqns. (8) and (10) is:

F (z)

2�
=

Z
1

jzj

S(r)[1� �(r)]r dr (14)
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which implies that F (z) is symmetric about z = 0: i.e., the line pro�le is symmetric about

the rest wavelength. From Eqn. (14) we derive:

S(r)[1� �(r)] = � 1

2�

1

z

dF

dz
= � 1

2�

�
�0

ct

�
2

1

��

dF

d��
(15)

where r = jzj = ctj��j. Since the pro�le is symmetric one obtains the same information

using either z � 0 or z � 0. Thus without a photosphere it is not possible to separate S and

�, however the product Sf1� �g can be determined for all radii.

To demonstrate that the above equations really do allow for a clean inversion, we have

generated line pro�les under the given assumptions and using S(r) and �(r) given by power

laws of various exponents. Figure 2 shows that the power law behavior can be recovered

by applying the inversion formulae to the line shape. Although here we have assumed that

the functions are monotonically decreasing with r, this is not a necessary condition for our

derivations and the formulae apply also for non-monotonic distributions.

Because the inversions in Figure 2 were applied to pristine model lines, the results show

very little noise (the small amount is due to numerical error), however in application to real

data, the quality of the inversion will of course depend upon the signal to noise and spectral

resolution of the data. Because derivatives are especially sensitive to a high frequency noise

component, smoothing of the spectrum or some other stabilization technique may need to

be applied, which typically amounts to assuming a priori some level of smoothness of the

functions �(r) and S(r) (c.f. Craig & Brown 1986).

5. Conclusion

Eqns. (7), (9), and (13), taken together constitute a complete analytic inversion of

supernova lines in the Sobolev approximation. Given the present assumptions, some of the

more interesting facts are: (1) the steepness of the mid region reects the size of the optical

depth; (2) the absence of a line implies negligible optical depth; (3) a jagged mid region

signals a clumpy absorbing region near the photosphere; (4) the emission feature may have

no rising humps; (5) emission features cannot be blueshifted or redshifted simply by varying

the line source function or optical depth. When applied under the right circumstances, the

formulae may provide useful information on the physical conditions in the atmosphere as

well as constraints on supernova explosion models.

It is also interesting that this inversion problem possesses a unique solution for both

S(r) and �(r). A persistent worry in supernova modeling is that very di�erent physical

parameters may lead to identical looking synthetic spectra. The analytic solutions above
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demonstrate that, at least in principle, each di�erent choice of S(r) and �(r) produces a

distinct line pro�le (although in practice it may be impossible to discern the di�erences from

noisy data). Although for more general models the inversion will not be unique, the success

in the present case does give some support that a good �t to a line does indeed imply realistic

physical parameters.
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Fig. 1.| Schematic diagram of how line pro�les are calculated in the Sobolev approximation.

The �gure is a cross-sectional view of the supernova with the sphere in the center representing

the photosphere. The dotted/dashed lines show the region of integration for three points on

the line pro�le, one each on the red side, the mid region, and the blue side. In each case the

integration over that region of the atmosphere produces the ux at the wavelength where

the dotted line intersects the line pro�le. On the mid and red side, the dashed lines represent

the region of the atmosphere where light comes directly from the photosphere.



{ 13 {

Fig. 2.| Examples of the application of the inversion formulae. Panels (a) and (b) show

the source function and optical depth obtained from the inversion of line pro�les generated

with the same source function S = W (r), but di�erent power indices (n = 2; 4; 8; 12) for the

optical depth. Panels (c) and (d) show the the source function and optical depth obtained

from the inversion of line pro�les generated with the same optical depth power law (n = 8),

but di�erent source functions (S(r) / r�n, n = 0; 1; 2; 4). The solid lines are the exact input

functions and the diamonds are the functions extracted using the inversion formulae. The

small amount of noise in the plots is due to numerical error.


